Chiemgau impact (hypothesis) is a term that denotes a meanwhile manifoldly proved meteorite impact that happened as an extraordinary event in prehistoric times (Bronze Age, Celtic era) in southeast Bavaria (Germany). A large cosmic body (a comet or an asteroid) hit the ground and left a big crater strewn field with all relevant impact evidence. This website focuses on all aspects of the related scientific research including reports and publications on geosciences, astronomy, archeology and science of history, but also on discussions of this spectacular research area. In the Wikipedia four-line article "Chiemgau impact hypothesis" this event is characterized as "an obsolete scientific theory" that has been raised "by a team of hobby-archaeologists". This is grossly deceptive and typifies the standpoint of a few obstinate opponents of the Chiemgau impact, hence taking their side and thwarting Wikipedia requirements.
Continuing our description with a summary of the impact inventory of the Chiemgau strewn field (Part 1), we present here the second part, which is again published on the science portal Researchgate as a preprint. The article can be downloaded here as a PDF file (click on the title):
The start image above shows a topographic map and terrain surface of the digital terrain model DGM 1 for the natural monument at the Seeon horse farm, which has always been listed in maps and descriptions as a typical dead ice hole from the last ice age and is listed by the Bavarian State Office for the Environment (LfU) as a geotope particularly worth seeing.
The DGM 1 symbolizes a necessary rethinking of the LfU’s Bavarian ice age research, which continues to adhere to a dead ice hypothesis that has never been scientifically or geologically substantiated, with countless so-called dead ice holes and their designation as geotopes, which was recently documented in an article and can be seen as an example of scientific falsification by the LfU in the case of the Tüttensee meteorite crater.
The following two iPosters have been accepted for presentation at the renowned American Geophysical Union conference in New Orleans in December. The abstract announcements can now be downloaded:
Each year, AGU’s annual meeting, the largest gathering of Earth and space scientists, convenes 25,000+ attendees from 100+ countries to share research and connect with friends and colleagues. Scientists, educators, policymakers, journalists and communicators attend AGU25 to better understand our planet and environment, opening pathways to discovery, opening greater awareness to address climate change, opening greater collaborations to lead to solutions and opening the fields and professions of science to a whole new age of justice equity, diversity, inclusion and belonging.
Abstract. – Archaeological sites undoubtedly destroyed by a meteorite impact had not been identified so far. For such a proof, both a meteorite impact and its definite effects on an archaeological site would have to be evidenced. This review article reports on geoarchaeological investigations, involving mineralogy, petrography, and geophysics, which established evidence that two prehistoric human settlements have been affected by the Late Bronze Age/Early Iron Age (ca. 900-600 BC) Chiemgau meteorite impact in southeastern Germany. One site, the Mühlbach area, was affected by the ejecta from the 600 m Ø-Tüttensee crater, one of the largest craters in a crater strewn field measuring about 60 x 30 km. At the other site, Stöttham close to Lake Chiemsee, the catastrophic layer of the impact was found embedded in the archaeological stratigraphy of a settlement, which had been repeatedly occupied from the Neolithic to the Roman era. At both sites, artifacts have become components of impact rocks, establishing a hitherto unknown form of an impact rock, an artifact-in-impactite. The immediate coexistence of rocks, which exhibit impact-diagnostic shock metamorphism, with relicts of metallic artifacts, as encountered in finds from Stöttham, are unprecedented evidence of human experience of a meteorite impact.
It reports about impact melting of crater cobbles and about a meteorite fragment in crater Emmerting 4 (in the previous impact literature crater #004). Although these are interesting new findings presented in the poster, Procházka’s contribution does not show great scientific honesty, to say the least.
Crater #004 near Emmerting is listed by Procházka as one of several other craters and depressions as having been studied for about two decades, but a clear classification as an impact crater is denied. Only a reference to an affirmative work of 25 years ago is quoted, but extensively referred to inapplicable explanations of anthropogenic origin.
A published seminar presentation on the Chiemgau impact was held on March 8, 2016, at the Institute of Geochemistry, Mineralogy and Mineral Resources, Charles University, Prague, on the Chiemgau impact, presented together with colleagues.
This detailed published work by Procházka on the Chiemgau impact crater strewn field (37 pages!), then known for 10 years, and its impact evidence is now simply hushed up at LPSC 2023. Not even the word Chiemgau appears in the text of his contribution.
I add:
At the LPSC alone, where now Procházka presents the #004 crater, there are seven contributions to the Chiemau impact in the years 2012 – 2020. Moreover, three contributions at the Planetary Crater Consortium meetings, also three contributions at the Meteoritical Society Meetings and two contributions at the AGU Fall Meeting can be added.
Eleven mostly peer-reviewed articles on the Chiemgau impact have been printed in scientific journals from 2006 – 2023.
Unfortunately Procházka joins the group of a few researchers from the so-called “impact community”, connected with the Earth Impact Database at the Canadian University of New Brunswick under the direction of John Spray, who also keep silent about the Chiemgau impact as the currently most important Holocene impact event with well over 100 craters, all proven impact criteria, and exciting published archeological references (also see here).
How much they resemble each other: Chiemgau impact and Mars impact.
Top: The Aiching/Dornitzen semi-crater punched into the Inn Valley slope today, after the other half has been “shaved off” by the Inn River.
Below: This image was taken by NASA’s Mars Reconnaissance Orbiter on March 12, 2022. It shows a crater punched into the Martian surface, exposing several previously formed layers. Half of the crater was then destroyed when the Mars channel was opened. – NASA/JPL-Caltech/University of Arizona.
Interestingly, the Chiemgau and Mars craters are about the same size (50 m), with objects about 1.5 m in size still resolved in the Mars crater image.
With respect to the Tüttensee crater, it is remarkable in this Mars crater that also a terrace-shaped ejecta rim has developed after a part of the crater-facing wall has flowed back into the hollow form.
Digital terrain model DGM 1 of the Tüttensee crater with the true inner crater with a good 300 m diameter and the terraced ring wall measuring 600 m.
A recent article by Kenkmann et al. in the GSA Bulletin titled
Secondary cratering on Earth: The Wyoming impact crater field
has led to a plethora of noticeable reactions especially on the internet and has led to an extensive critical commentary article that can be clicked HERE on the website for an introduction and HERE as a PDF. The commentary article, which comprehensively contrasts the Wyoming impact crater field with the Chiemgau impact crater field, accuses the authors of serious methodological errors and scientifically incorrect work. The conclusion is that this alleged Wyoming secondary crater field does not exist.
Three Examples of the Wyoming impact craters. Google Earth.
Chiemgau impact crater: Digital Terrain Model DGM 1 – topographic contour lines.